What is Hadoop and Why it is Important ?
Hadoop is an open-source software framework for storing data and running applications on clusters of commodity hardware. It provides massive storage for any kind of data, enormous processing power and the ability to handle virtually limitless concurrent tasks or jobs.
Hadoop History
As the World Wide Web grew in the late 1900s and early 2000s, search engines and indexes were created to help locate relevant information amid the text-based content. In the early years, search results were returned by humans. But as the web grew from dozens to millions of pages, automation was needed. Web crawlers were created, many as university-led research projects, and search engine start-ups took off (Yahoo, AltaVista, etc.).
One such project was an open-source web search engine called Nutch – the brainchild of Doug Cutting and Mike Cafarella. They wanted to return web search results faster by distributing data and calculations across different computers so multiple tasks could be accomplished simultaneously. During this time, another search engine project called Google was in progress. It was based on the same concept – storing and processing data in a distributed, automated way so that relevant web search results could be returned faster.
In 2006, Cutting joined Yahoo and took with him the Nutch project as well as ideas based on Google’s early work with automating distributed data storage and processing. The Nutch project was divided – the web crawler portion remained as Nutch and the distributed computing and processing portion became Hadoop (named after Cutting’s son’s toy elephant). In 2008, Yahoo released Hadoop as an open-source project. Today, Hadoop’s framework and ecosystem of technologies are managed and maintained by the non-profit Apache Software Foundation (ASF), a global community of software developers and contributors.
Why is Hadoop important?
- Ability to store and process huge amounts of any kind of data, quickly. With data volumes and varieties constantly increasing, especially from social media and the Internet of Things (IoT), that's a key consideration.
- Computing power. Hadoop's distributed computing model processes big data fast. The more computing nodes you use, the more processing power you have.
- Fault tolerance. Data and application processing are protected against hardware failure. If a node goes down, jobs are automatically redirected to other nodes to make sure the distributed computing does not fail. Multiple copies of all data are stored automatically.
- Flexibility. Unlike traditional relational databases, you don’t have to preprocess data before storing it. You can store as much data as you want and decide how to use it later. That includes unstructured data like text, images and videos.
- Low cost. The open-source framework is free and uses commodity hardware to store large quantities of data.
- Scalability. You can easily grow your system to handle more data simply by adding nodes. Little administration is required.
Comments
Post a Comment